• Research Groups
Research Groups
Stem cells and regeneration

About

Rhiner Lab

Rhiner Lab

Many tissues including the brain contain quiescent stem cell populations, which are activated upon damage. We study recently discovered damage-responsive neural stem cells in the fruit fly, which start proliferating after traumatic brain injury and efficiently produce new neurons in the injured brain region. We want to uncover the injury signals and molecular mechanisms that activate neural stem cells and control regenerative neurogenesis. We are also interested in understanding how altered stem cell plasticity (hyperactivation or adult neural stem cell loss) impacts on tissue regeneration, aging and cancer.
To uncover regulators of stem cell activation and neural differentiation, we use highly sensitive lineage tracing tools, in combination with whole genome expression profiling, functional genetics and high-end confocal microscopy.
Moreover, we complement current efforts to understand brain regeneration at the cellular level with behavioral assays to answer fundamental questions such as how adult-born neurons integrate into pre-existing circuits and how they may contribute to recovery of impaired brain functions after injury. This setup allows us to interrogate brain restorative processes in a holistic fashion.

INFO

Get in touch

To find out more about our lab, contact Christa Rhiner via email.

Lab Webpage

Rhiner Lab

Projects

Rhiner Lab

Know our Projects

We are interested in understanding the molecular mechanisms that drive and stop the activation, proliferation and differentiation of quiescent stem cells with implications for tissue homeostasis, cancer and regeneration.

Team

Rhiner Lab

Know our Team

Christa Rhiner

Principal Investigator

Anabel Rodriguez Simões

PhD Student

Carolina Alves

Research Technician

Margarida Caio

PhD Student

Vesna Petojevic

Vesna Petojevic

Lab Administrator

Publications

Rhiner Lab

Loading
Please wait...